Hybrid Steepest Descent Method for Solving Hierarchical Fixed Point Approach to Variational Inequalities Constrained Optimization Problem
نویسندگان
چکیده
An explicit hierarchical fixed point algorithm is introduced to solve the monotone variational inequality over the fixed point set of a nonexpansive mapping. This paper discusses a monotone variational inequality with variational constraint and convex optimization problems over the fixed point set of a nonexpansive mapping. The strong convergence for the proposed algorithm to the solution is guaranteed under some assumptions.
منابع مشابه
Hybrid steepest-descent method with sequential and functional errors in Banach space
Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملA Generalized Hybrid Steepest-Descent Method for Variational Inequalities in Banach Spaces
The hybrid steepest-descent method introduced by Yamada 2001 is an algorithmic solution to the variational inequality problem over the fixed point set of nonlinear mapping and applicable to a broad range of convexly constrained nonlinear inverse problems in real Hilbert spaces. Lehdili and Moudafi 1996 introduced the new prox-Tikhonov regularization method for proximal point algorithm to genera...
متن کاملAn Algorithm for Solving Triple Hierarchical Pseudomonotone Variational Inequalities
In this paper, we introduce and analyze a hybrid steepest-descent extragradient algorithm for solving triple hierarchical pseudomonotone variational inequalities in a real Hilbert space. The proposed algorithm is based on Korpelevich’s extragradient method, Mann’s iteration method, hybrid steepest-descent method and Halpern’s iteration method. Under mild conditions, the strong convergence of th...
متن کاملStrong Weak Convergence Theorems of Implicit Hybrid Steepest-descent Methods for Variational Inequalities
Assume that F is a nonlinear operator on a real Hilbert space H which is strongly monotone and Lipschitzian with constants η > 0 and κ > 0, respectively on a nonempty closed convex subset C of H . Assume also that C is the intersection of the fixed point sets of a finite number of nonexpansive mappings on H . We develop an implicit hybrid steepest-descent method which generates an iterative seq...
متن کامل